
Interaction Design Patterns: Twelve Theses
Jan O. Borchers

Department of Computer Science
Darmstadt University of Technology, Germany

+49 731 503 1303
http://www.tk.uni-linz.ac.at/̃ jan/

ABSTRACT
This position paper was written for the BHCI Workshop “Pat-
terns in Human Computer Interaction”, London, Nov. 16–17,
2000. It is a revised and extended version of a paper for a
patterns workshop at CHI 2000. It offers twelve statements
outlining my position about patterns in human-computer in-
teraction (HCI). The first, under “Roots”, suggest how HCI,
unlike software engineering, can adapt the original patterns
idea from architecture. The second set, “Adaptation”, shows
how this concept can be expanded to cope with the dynamics
and requirements of user interfaces. The “Users” section ex-
plains how HCI patterns lead to participatory design. The
closing claims introduce some current work on using pat-
terns in software engineering, HCI, and the application do-
main to enhance communication in interdisciplinary design
teams, and outline how those pattern languages fit into the
usability engineering lifecycle.

ROOTS
Claim 1 Architecture is closer to HCI than to software engi-
neering.

The original intention of patterns as introduced by architect
Christopher Alexander [1, 3] was to capture the essence of
successful solutions to recurring design problems in urban ar-
chitecture. According to Alexander, “a building or a town is
given its character, essentially, by those events which keep on
happening there most often” [1, p. 66], and the social patterns
of activity in an environment determine the geometrical and
structural patterns of that environment.

Consequently, Alexander’s patterns of urban architecture de-
scribe aspects of the physical environment in which people
live and work. The architect is the “designer”, and the inhab-
itants are the “users” of these environments. The artefact that
the architect designs is something that its inhabitants directly
interact with and live in.

The task of HCI design is very similar to this: User inter-
face designers shape a virtual environment in which the user
works, or, in the case of 3-D virtual environments, may even
live. As we know, users generally identify a software system
with what its user interface shows them, without caring about
its inner works. The artefact that the user interface designer
creates is something that its users directly interact with or
even live in.

In striking contrast to these two professions is the work of the
developer, or software engineer: There is no doubt that she

creates a system that has its own structure and architecture,
but the only people who will ever “live inside” this architec-
ture are software engineers! As with any technical system,
it is not the goal of a software system to make its entire in-
ner workings transparent and understandable for the user. In-
stead, its user interface is designed to create a consistent and
easy-to-use abstraction from this inner complexity. The arte-
fact that the software engineer designs is something that its
users should not have to directly interact with, and certainly
will never live in.

The direct connection between design work and user experi-
ence, therefore, is something that makes HCI and architecture
have much more in common than architecture and software
engineering. As Barfield et al. put it in their Interaction De-
sign curriculum description:

“Like the architect who views a building as an
environment that defines certain potential behav-
iours of those who go there, the interaction de-
signer focuses on behavioural patterns – on the
way these patterns can shape people’s lives.” [5,
p. 70]

Claim 2 The Gang of Four book contains no patterns.

Another important aspect of patterns as introduced originally
is that they are readable and understandable by professionals
and non-professionals alike. In fact, Alexander’s patterns ad-
dress both audiences, for example with his illustrations: At
its very beginning, each pattern contains a detailed, realis-
tic example photograph to quickly “sensitize” readers to the
subject that the pattern addresses, even if they are architec-
tural laymen. After the solution has been described, however,
most patterns are illustrated once more in the more abstract,
concise form of a sketch, leaving out unimportant details, and
concentrating on the essence of the solution. This is a format
that especially professionals will prefer over a crowded pho-
tograph to quickly grasp the idea of a pattern.

Naturally, the patterns Alexander presents do not make a lay-
man an expert architect, and Alexander admits this in his
current theories that require a “master builder” as well as
patterns. But they do describe the essential issues to con-
sider when creating a room, house, or neighbourhood layout.
Moreover, the writing style in “A Pattern Language” is such
that non-architects can easily read and understand most of the
patterns presented, and try to apply them themselves. In fact,
Alexander’s goal was to give the inhabitants a language to ex-
press their own design preferences and to have a word (again)

1



in the design of their environments. But this approach is strik-
ingly similar to the ideas of user-centred design as preached
and occasionally even practised in HCI design work.

Contrast this with the most successful text in the software pat-
terns community [13]: The “Gang of Four” book is without
doubt a very valuable resource for aspiring programmers and
software engineers, capturing successful solutions (and some-
times hacks) to recurring problems in object-oriented design.

But it is not readable by people from outside the software en-
gineering profession. It does not describe aspects of an archi-
tecture that anybody else outside the profession can (or would
like to) understand, let alone “live” in. In a way, software en-
gineering has successfully adapted an important part of the
pattern concept – creating a vocabulary of solutions to recur-
ring design problems for communication within the commu-
nity –, but has failed to carry over the more fundamental idea
of supplying this language (and the power associated with
it) to others involved in their projects, especially end users.
And in fact, it may not even be interesting for those users to
learn this language; they will not want to deal with those in-
ner structures of the software system. (As an example, the
GoF book contains code fragments to illustrate its concepts,
which are unreadable for non-programmers, and which would
probably translate to Alexander using static equilibrium cal-
culations to illustrate some of his patterns.)

Moreover, as Jim Coplien pointed out at ChiliPLoP’99 [9],
the book does not really describe a structured approach to
learn the essential concepts of object oriented software de-
sign. The patterns are more like a collection of tricks than
a structured treatment of the subject. Nevertheless, some
object-oriented software design courses are taught simply by
going through the GoF book!

It is interesting to note that recently, the Gang of Four were
even “tried” for their book in a mockup process at the OOP-
SLA’99 conference. Jenifer Tidwell, author of the most am-
bitious HCI pattern language effort to date [22], has written
an interesting comment on this process [23].

However, taking the first two claims together, there may in-
deed be a reason why software engineering patterns are of-
ten written in an expert style not very accessible for non-
computer scientists: They are not supposed to be read by out-
siders.

Claim 3 HCI needs to derive its own pattern notion from the
original sources.

From the last two claims, it becomes clear that it will be more
fruitful for HCI to take a fresh look at the original sources
of the pattern idea, than to blindly adopt the software engi-
neering notion of design patterns just because it appears to
be a closer profession (which, as outlined above, it may not
even be). The ideas included in the original pattern concept
– user participation, and an understandable language for non-
professionals – are too valuable and too close to the interests
of HCI to be ignored.

It is important to see that the software engineering community
has not ignored these aspects entirely. Many pattern experts
have tried to carry Alexander’s larger goals over to software
engineering. But at OOPSLA’96, Alexander made it clear
in his keynote speech that the majority of software patterns
folk had overlooked something he considered fundamental in
his work, something that he called “the Quality Without A
Name”, and that for user interfaces is best described by ad-
jectives such as “intuitive”, or “transparent”:

“Now, my understanding of what you are do-
ing with patterns. . . It is a kind of a neat for-
mat, and that is fine. The pattern language that
we began did have other features, and I don’t
know whether those have translated into your
discipline. I mean, there was at root behind the
whole thing a continuous mode of preoccupation
with under what circumstances is the environ-
ment good. In our field that means something.”
[2]

The CHI’97 workshop [6] arrived at a similar result, agreeing
that the values of a design school, its overall beliefs in what
constitutes a “good” solution to a design problem, are very
strongly represented inside a pattern language written by an
author of that school.

Interestingly, while software engineering has picked up the
pattern idea far more intensely than HCI, several classic HCI
texts [20, 19, 4] already cite Alexander’s pattern work as an
influential source, while the first appearance of patterns in the
object-oriented community dates back to OOPSLA’87 [7].

Tom Erickson has developed an interesting approach to use
patterns as lingua franca in the design team. It is described in
[12].

Claim 4 HCI pattern languages are not Style Guides. HCI
pattern languages are not Golden Rules. HCI pattern lan-
guages are not standards. But HCI pattern languages are
about HCI.

There are many formats that have been considered in the
HCI community to effectively communicate design experi-
ence, usually to others from the same profession.

Style guides, such as [4], are a very efficient medium to en-
sure consistency within a single user interface environment,
or “toolkit”. They are concrete, and constructive, but do not
carry over well to a different toolkit.

General guidelines, such as the Eight Golden Rules of Inter-
face Design [21, p. 74], are useful to categorize a bad charac-
teristic of an existing interface design, and to trace this back
to the rule it breaks, but they miss concrete examples, and
are not constructive (they do not help designers with options
when they have to design a new system).

2



Standards, such as the ISO Multimedia User Interface Design
Software Ergonomic Requirements [16], are a useful vehi-
cle to establish rigid rules in a developing or mature field.
But without references to concrete examples, and an informal
writing style, they are not ideal to learn about design.

It is very useful to evolve these other forms of communicat-
ing design experience further. But when we talk about pat-
terns, we should make sure that the essential characteristics,
the structure and components that define what a pattern is, are
not forgotten. (Otherwise, why call them patterns?)

For example, each of Alexander’s patterns describes a suc-
cessful solution of a design problem. It contains name, rank-
ing, picture, context with links to larger-scale patterns, prob-
lem statement and description, solution, diagram, and refer-
ences to smaller-scale patterns, and it balances a set of oppos-
ing forces optimally in some way for the given context. HCI
patterns should also contain those ingredients, or explain how
and why they adapt this format for HCI (as I do below).

Along the same lines, it has to be clear what domains HCI
patterns should address. Of course, all issues of interaction
between people and machines that clearly fall into the area of
HCI are to be addressed by patterns. They range from task
representation, dialogue, navigation, information and status
representation, down to layout, device aspects, physical inter-
action, etc.

However, issues such as social interaction should be treated
with caution: While it is very important that these aspects
are dealt with when designing a user interface, patterns about
them would not address the human-computer dialogue di-
rectly. The pattern format is without doubt extremely suit-
able to model aspects of human-human interaction as well as
human-computer interaction. However, to keep the notion of
HCI patterns focused, it may be necessary to deal with those
“HHI patterns” under a separate name. (Otherwise, why call
our patterns HCI patterns?)

Actually, this is a discussion about what fields belong to HCI.
At the Interaction Patterns Hot Topic at ChiliPLoP’99 [9], the
same problem arose, because to define what Interaction De-
sign Patterns should describe, we needed to define what In-
teraction Design as a discipline contains. The report contains
an initial attempt at a definition:

An Interaction Pattern Language generates
space/time interaction designs that create a sys-
tem image close to the user’s mental model of
the task at hand, to make the human-computer
interface as transparent as possible. [9]

At the INTERACT’99 workshop, we started with this defini-
tion, but arrived at a more “user-centred” form:

The goals of an HCI pattern language are to share
successful HCI design solutions among our col-
leagues, and to provide a common language for

HCI design to anyone involved in the design, de-
velopment, evaluation or use of interactive sys-
tems. [15]

The CHI 2000 workshop finally agreed on the following def-
inition:

An HCI design pattern captures the essence of a
successful solution to a recurring usability prob-
lem in interactive systems. It consists of the
components name, ranking, sensitizing example,
context, problem statement, evidence (rationale,
examples), solution, sketch, references (to other
patterns), synopsis, and credits.

It would be interesting, and helpful for people from outside
the workshop, to continue discussion about this definition.

ADAPTATION
Now that I have outlined what I believe should be the start-
ing point to define what HCI patterns are, I will discuss how
I think the original pattern concept needs to be changed and
extended to become adequate for capturing user interface de-
sign experience.

Claim 5 Architectural pattern languages need to be extended
by the notion of temporal structure to deal with HCI.

A pattern language is much more than the sum of its indi-
vidual patterns. The links from patterns addressing large-
scale design issues down to small-scale design details help
the reader and prospective designer to find the next impor-
tant pattern as she refines her design. In architecture, the re-
sulting hierarchy is quite simply ordered by geometrical size:
Patterns dealing with the general layout of an entire neigh-
bourhood are higher up in the hierarchy than patterns dealing
with the question of how to split up an individual house into
rooms.

This simple organizing principle ignores one major dimen-
sion: time. This works reasonably well for architecture, as the
artefacts created (buildings, streets, etc.) do not change them-
selves substantially over time. Only the events taking place
within those environments change over time, and Alexander
uses such sequences of events (such as traffic intensity over
the course of a day) as a single aspect that influences the de-
sign of an environment at the geometric level the pattern ad-
dresses.

This approach does not work for HCI, because the artefacts
we create do change substantially over time, follwing the
tasks they support. To give a simple example: A railway in-
formation kiosk changes from a start page, to a page giving
train type options and travel time input fields, to another page
displaying possible train connections, etc. In other words, we
design user interfaces along a time dimension as well as along
two (or three) spatial dimensions.

3



Therefore, the ordering principle of spatial size has to be ex-
panded into an ordering principle of spatial and temporal ex-
pansion. One obvious solution is to put time at the top of
the hierarchy, according to the large-scale notion of tasks:
First, the designer thinks about what the complete task looks
like, what objects and procedures it contains, and how it can
be supported by a series of interactions, or dialogues. Then
she goes into detail for each of those steps, designing those
shorter dialogues, until each step in the dialogue sequence (or
rather graph) is designed with its interaction objects, layout,
and spatial geometry.

Other ordering principles are possible, for example those that
are more oriented toward the design process itself; we dis-
cussed those possibilities in some detail at the INTERACT’99
workshop [15], but more work needs to be done in this area.

Claim 6 The structure and components of individual pat-
terns need to take the temporal dimension into account.

The medium that architectural patterns use to sensitize the
reader to the subject of a pattern is a photograph. The IN-
TERACT workshop arrived at the conclusion that time-based
media, such as animated scenes or video clips of an interac-
tion, will be necessary to introduce the ideas of HCI patterns
that deal with dynamic aspects of a dialogue. While an inter-
active mini-application showing a certain interface concept
(such as Balloon Help) “in use” would also be possible as ex-
ample, it was considered too complicated to understand for
non-professionals (for example, a reader would have to dis-
cover somehow that balloons appear in the example when a
pointer is moved over an object).

Similarly, the architectural sketches will need to be replaced
by time representations such as storyboards for such HCI pat-
terns. Video material would be less useful here, since it takes
longer to grasp when a professional browses a pattern collec-
tion.

Claim 7 HCI patterns need to give empirical evidence of
their validity.

A point that is often criticized in Alexander’s work is the fact
that he hardly gives any “hard” empirical data to support the
superiority of his solutions. In some sense, this is understand-
able, since the ultimate measure he uses is whether people
actually say that they feel good in an environment or not [1,
p. 289–297]. Alexander argues that, while economical, prac-
tical, and stylish opinions usually diverge, the criterion of
feeling good in an environment returns high levels of agree-
ment between people for good, timeless solutions (for exam-
ple, using brick walls vs. prefabricated modular wall panels).

Nevertheless, HCI is a discipline that has a strong foundation
in empirical data from user tests and preferences, and these
scientific methods need to be reflected in an HCI pattern lan-
guage to make it valid and acceptable for the HCI community.

However, it has to be ensured that endless statistical ta-
bles do not make the pattern unreadable, especially for non-

professionals.

Therefore, the Examples section of a pattern should include
brief summaries of results from representative user studies,
with references to the original publications. This informa-
tion will satisfy the demands of scientific rigour of the pro-
fessional and researcher, but also show the amateur that the
suggested solutions have been tested empirically.

USERS
With these adaptations of the original pattern concept in
place, I would like to point out some issues that I think are
important characteristics of patterns for the end users of a sys-
tem.

Claim 8 HCI patterns must be readable by users.

As explained above, one of the original goals of patterns was
to supply the “users” of environments with a language to in-
fluence environmental design decisions.

If HCI aims at a similar user participation in the design
process, HCI patterns must be written in a form understand-
able even by UI design laymen. Arcane notations, while use-
ful for the expert, must be turned into readable prose. After
all, patterns are ultimately a literary form, with strong rules
for format, content, and style, all to maximize readability.

Claim 9 HCI patterns will take power away from HCI de-
signers and put it into the hands of the users.

His colleagues did not like Alexander’s ideas particularly
when he first published them. One of the reasons for this
is that those pattern languages aimed at empowering inhab-
itants to participate in the design process. This implied that
architects would have had to give away some of their power,
and incorporate the opinions of non-professionals. Conse-
quently, few architects have used those patterns to give them
to customers and talk with them about their design ideas. In-
stead, Alexander’s pattern language book has gained a large
following among people wishing to redecorate their house or
garden, essentially working as “amateurs”.

If HCI takes the patterns idea seriously, then its adoption must
go hand in hand with a stronger participation of users in the
user interface design process. It appears that there is a more
welcoming atmosphere for such measures in HCI than there
was in architecture, which can be seen in the advent of partic-
ipatory and user-centred design methods in recent years. But
ultimately, it may be well possible that not UI design pro-
fessionals, but rather end users will pick up a copy of those
HCI patterns and use them to redefine, customize and im-
prove their own private computing environments.

INTERDISCIPLINARY DESIGN
The final two claims lead to my recent work in HCI patterns,
which extends the pattern concept to further domains of ap-
plication and suggests a new participatory design method.

Claim 10 Patterns can model many application domains.

4



Patterns have been a successful tool to model design experi-
ence in architecture, in software design (with the limitations
discussed here), and, as existing collections show, also in
HCI [22]. Other domains have been addressed by patterns as
well. Patterns have been used to describe business domains,
processes, and tasks to aid early system definition and con-
ceptual design [14]. Even composing or improvising music
can be considered a design activity, and some experience be
expressed in pattern form [11].

Indeed, there is no reason why the experience, methods, and
values of any application domain cannot be expressed in pat-
tern form, as long as activity in that application domain in-
cludes some form of design, creative, or problem-solving
work.

Claim 11 Using patterns in software architecture, interac-
tion design and the application domain of a project can im-
prove communication in interdisciplinary design teams.

User Interface Software Design

Application Domain
Pattern Language

Human-Computer Interaction
Pattern Language

Software Engineering
Pattern Language

Large-
Scale

Concepts

Small-Scale
Concepts

Tasks

Interaction Objects

Dialogues

Archi-
tecture

Design

Implementation

+

Project
Environ-

ment

Project
Environ-

ment

This is the essence of my current research: If patterns are
written with their original qualities, including readability by
other professions, in mind, then the groups who have to work
together in a software design project could understand each
other much better. Software engineering could express its
methods, experience and values about software architecture
in pattern form. Similarly, HCI designers could rewrite their
style guides, standards, golden rules, etc. in the form of an
HCI pattern language. And finally, users, or other experts
from the application domain of a project, could use the same
format to express their own knowledge about the application
domain.

Claim 12 The use of patterns in the various domains can be
mapped to most phases of the usability engineering life cycle.

Nielsen [18] suggests a usability engineering life cycle con-
sisting of eleven phases. The following table shows which
parts of the pattern languages can be used in which phase.

5



Phase Usability Engineering Life Cycle Pattern use
1. Know the user (characteristics, current &

desired tasks, functional analysis, user &
job evolution)

Extract application domain experience as pattern language

2. Competitive analysis (examining existing
products)

Generalize good UI solutions into HCI patterns

3. Setting usability goals (financial impact
analysis, prioritizing design goals)

Use competing goals as forces in abstract HCI patterns

4. Parallel design (several initial designs by
independent teams)

Use general HCI design patterns (maybe from book) as common design
guidelines for the teams

5. Participatory design (actively involving
users in the design process)

Application domain expert (user) and HCI designer exchange their pat-
tern languages for better mutual understanding

6. Coordinated design of the total interface
(Consistency within and across products)

Lower-level HCI design patterns, including project-relevant, concrete
examples, communicate the common look and feel efficiently

7. Apply guidelines and heuristic analysis
(style guides, standards, and guidelines)

Patterns improve upon those formats because of their standard format,
hierarchical networking, inclusion of examples, and discussion of prob-
lem context as well as solution

8. Prototyping Software design patterns express the standards, components, and spe-
cific project ideas of the development team in a way better understand-
able by the HCI experts

9. Empirical testing (user tests) Problems discovered can be related to applicable patterns to solve the
problem (vocabulary function)

10. Iterative design (improve prototypes,
capture design rationale)

HCI and software patterns (constructive, unlike guidelines) inform de-
signers about design options at each point, and help capturing the space
of design options explored (structural design rationale) – possibly with
anti-patterns for bad solutions.

11. Collect feedback from field use Use application domain pattern language again as common vocabulary
between UI experts and users. Use feedback to strengthen successful
HCI and software patterns, and to re-evaluate suboptimal ones.

The basic pattern idea is not too hard to convey, and the pat-
terns will evolve over time, becoming more stable with every
new project. But the important thing is that, once the struc-
ture of expressing concepts is the same for all participants,
they can exchange their languages, and use them all together
as a lingua franca within the team. In discussions, impor-
tant concepts can be recalled with a single word (the name of
the pattern), and there is a documented base of methods and
values that everybody can refer to. This may help to bridge
the interdisciplinary gaps that often still prevent successful
cooperation within such teams [17]. These ideas, and our ap-
plication to some of our own projects, are discussed in more
detail in [8] and [10].

I hope that these twelve theses can help to create a lively dis-
cussion about the state of HCI patterns at the workshop. Ad-
ditional information is available from the HCI Patterns Home
Page at 〈http://www.tk.uni-linz.ac.at/̃ jan/patterns/〉.

ABOUT THE AUTHOR

Jan Borchers is a researcher at the Telecooperation Research
Group, Darmstadt University of Technology, Germany, and
works as visiting scientist and lecturer at the University of
Ulm, Germany, teaching courses in Designing Interactive
Systems, Web Design, and Telecooperation. He has car-
ried out project management and user interface design on a

number of projects dealing with interactive exhibits, includ-
ing an award-winning music exhibit, and works on a pattern-
based approach to interdisciplinary interaction design. He has
published his results at CHI, IEEE ICMCS, DIS 2000, and
other international HCI conferences, and in IEEE Multime-
dia, Computers & Graphics, the SIGCHI Bulletin, and other
journals. He participated in the HCI patterns workshop at
ChiliPLoP’99, and co-organized those at INTERACT’99 and
CHI 2000. His book, A Pattern Approach to Interaction De-
sign, will appear with publisher John Wiley & Sons in 2000.

References

[1] Christopher Alexander. The Timeless Way of Building.
Oxford University Press, 1979.

[2] Christopher Alexander. Keynote Speech, OOPSLA’96
11th Annual ACM Conference on Object-Oriented Pro-
gramming Systems, Languages and Applications (Oc-
tober 6-10, 1996, San Jose, California), 1996. (Confer-
ence video).

[3] Christopher Alexander, Sara Ishikawa, Murray Silver-
stein, Max Jacobson, Ingrid Fiksdahl-King, and Shlomo
Angel. A Pattern Language: Towns, Buildings, Con-
struction. Oxford University Press, 1977.

6



[4] Apple Computer. Macintosh Human Interface Guide-
lines. Addison-Wesley, 1992.

[5] Lon Barfield, Willie van Burgsteden, Ruud Lanfermei-
jer, Bert Mulder, Jurriënne Ossewold, Dick Rijken, and
Philippe Wegner. Interaction design at the Utrecht
School of the Arts. SIGCHI Bulletin, 26(3):49–79,
1994.

[6] Elisabeth Bayle, Rachel Bellamy, George Casaday,
Thomas Erickson, Sally Fincher, Beki Grinter, Ben
Gross, Diane Lehder, Hans Marmolin, Brian Moore,
Colin Potts, Grant Skousen, and John Thomas. Putting it
all together: Towards a pattern language for interaction
design. SIGCHI Bulletin, 30(1):17–23, January 1998.

[7] Kent Beck and Ward Cunningham. Using pattern lan-
guages for object-oriented programs. Technical Report
CR-87-43, Tektronix, Inc., September 17, 1987. Pre-
sented at the OOPSLA’87 workshop on Specification
and Design for Object-Oriented Programming.

[8] Jan O. Borchers. Designing interactive music sys-
tems: A pattern approach. In Human-Computer Inter-
action: Ergonomics and User Interfaces. Volume I of
the Proceedings of the HCI International ’99 8th Inter-
national Conference on Human-Computer Interaction
(Munich, Germany, August 22–27, 1999), pages 276–
280. Lawrence Erlbaum Associates, London, 1999.

[9] Jan O. Borchers. CHI meets PLoP: An interaction pat-
terns workshop (at chiliplop’99 conf. on pattern lan-
guages for programming, wickenburg, az, march 16–19,
1999). SIGCHI Bulletin, 32(1):9–12, January 2000.

[10] Jan O. Borchers. A pattern approach to interaction
design. In Proceedings of the ACM DIS 2000 Inter-
national Conference on Designing Interactive Systems
(New York, August 17–19, 2000), 2000.

[11] Jan O. Borchers and Max Mühlhäuser. Design patterns
for interactive musical systems. IEEE Multimedia, 5(3):
36–46, 1998.

[12] Tom Erickson. Lingua francas for design: Sacred places
and pattern languages. In Proc. DIS 2000 (New York,
August 17–19, 2000). ACM Press, New York, 2000.

[13] Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1995.

[14] Åsa Granlund and Daniel Lafrenière. PSA: A pattern-
supported approach to the user interface design process.
Position paper for the UPA’99 Usability Profession-
als’ Association Conf. (Scottsdale, AZ, June 29–July 2,
1999), 1999.

[15] Richard Griffiths, Lyn Pemberton, and Jan Borchers.
Usability pattern language: Creating a community.
Workshop at INTERACT’99 (Edinburgh, Scotland, Au-
gust 30–31,1999); report in preparation, 2000.

[16] ISO 14915. Multimedia user interface design software
ergonomic requirements, 1998.

[17] Scott Kim. Interdisciplinary cooperation. In Brenda
Laurel, editor, The Art of Human-Computer Interface
Design, pages 31–44. Addison-Wesley, 1990.

[18] Jakob Nielsen. Usability Engineering. Morgan Kauf-
mann, San Francisco, 1993.

[19] Donald A. Norman. The Psychology of Everyday
Things. Basic Books, New York, 1988.

[20] Donald A. Norman and Stephen W. Draper. User-
Centered System Design: New Perspectives on Human-
Computer Interaction. Lawrence Erlbaum Associates,
Hillsdale, NJ, 1986.

[21] Ben Shneiderman. Designing the User Interface.
Addison-Wesley, 3rd edition, 1998.

[22] Jenifer Tidwell. Interaction design patterns.
PLoP’98 Conference on Pattern Languages
of Programming, Illinois, extended version at
http://www.mit.edu/̃ jtidwell/interaction patterns.html,
1998.

[23] Jenifer Tidwell. The Gang of Four Are Guilty. http://-
www.mit.edu/̃ jtidwell/gof are guilty.html, 1999.

7


