
Breaking the Interdisciplinary Limits of Computer-
Human Interaction Design: A Pattern Approach

Jan O. Borchers
Telecooperation Research Group

Linz University
4040 Linz, Austria
+43 732 2468 9888
jan@tk.uni-linz.ac.at

ABSTRACT
A major limit for CHI is communication in
interdisciplinary design teams. We propose a pattern-based
approach to break this limit. A pattern language that
captures experience and values from software engineering,
HCI, and the application domain can improve
communication and acceptance within the design team, and
lead to better products and design rationales. We developed
an award-winning interactive music exhibit, WorldBeat,
and, from our experiences, started to build such a language.
We are now using this language to improve the design
process of a subsequent similar system.

Keywords
Design patterns, pattern languages, interaction design,
interdisciplinary design teams, guidelines, music, exhibits

INTRODUCTION: CHI AND COMMUNICATION
CHI deals with many aspects of communication. Not only
is it trying to improve the communication between human
and computer, but it also often stands at the borderline
between software engineering and user during development.

Still, one of the major limits that CHI has not managed to
break yet lies in communication. It is difficult for user
interface experts to communicate their experience and
methods to other design team members, from software
engineering, to application domain experts. This leads to
acceptance problems between these groups. They result
from a lack of understanding of the paradigms, methods,
and values of the other profession.

THE IDEA: A PATTERN APPROACH
Alexander originally introduced pattern languages into
urban architecture [1] to create a vocabulary of proven and
reusable design solutions for his profession. Software
engineering picked up this idea, especially with object-
oriented design patterns as presented by Gamma et al. [4].
HCI has only started to adopt AlexanderÕs ideas, but initial
efforts appear very promising. A more in-depth discussion
of pattern languages is beyond the scope of this paper.

We believe, however, that the concept of creating a pattern
language can and should be applied not only to
architecture, software engineering, or HCI in isolation.
Pattern languages are a more general model of structuring
design knowledge. They can be used in any discipline that
requires structured, creative work of some kind to be carried

out. In particular, many interesting application domains for
which software is being created, e.g., nontrivial office tasks,
management work, or artistic activity, can be described as a
pattern language. We can consider a composer who is
writing music to be a ÒdesignerÓ of a musical artifact.

This observation leads us to our central idea: If those three
distinct fields Ñ application domain, HCI, and software
engineering Ñ each express their knowledge, experience,
and values in the form of a pattern language, then the
following improvements become possible (see Fig. 1):

1. Views and concepts of each profession become easier to
understand for the others because the pattern concept of
presentation is the same, and it is geared towards clarity.

2. Once the three pattern languages are understood, it will
be easier to find bridges and analogies between them:
Abstract concepts from the application domain may give
hints to high-level user interface considerations, which in
turn may indicate overall system characteristics. Concrete
facts and objects from the application domain may point
to concrete physical interaction details, which can be
mapped to specific software objects and implementations.

The second step above joins the three distinct pattern
languages together to a single structure that represents the
combined experience of the interdisciplinary design team.

Naturally, these pattern languages do not (and should not)
develop overnight. Rather, they will gradually evolve while
successful solutions are being developed, usually over the
course of several similar projects. The advantage of such a
structured representation is that this knowledge is being
captured to be used for a design rationale, to build a

Interaction

Dialogs

Physical I/O

Tasks

Software

Design

Implementation

Architecture

Music

Mus. Sequences
(Harmonies,…)

Musical
Form / Style

Musical Building
Blocks (Notes,…)

Fig. 1: A pattern language spanning three disciplines.

corporate memory, to train new designers in academic
institutions or in industry, etc. It supplies an easy-to-
remember vocabulary for communication about successful,
reusable design solutions across discipline boundaries in a
flexible form. For example, AlexanderÕs original pattern
collections about urban architecture are readable and
fascinating even for non-architects.

PROOF-OF-CONCEPT: MUSIC EXHIBIT DESIGN
Music is an application domain not closely connected to
software engineering or HCI. We chose this area to prove
that the pattern language idea can be used to structure the
knowledge in such a domain as well.

As part of our research, we have developed several
interactive exhibits for public display. WorldBeat, an
exhibit about making music with computers in new ways,
was one of the first, and received the 1998 international
Multimedia Transfer Award. The entire exhibit is
controlled using a pair of infrared batons. Users can conduct
music, play virtual drums and other instruments, hum a
tune to find it in a database, and even improvise to a Blues
band without playing wrong. More details can be found in
[2] and the video proceedings of that CHI conference.

The system was built with some pattern ideas already in
mind. These patterns dealt with musical concepts, and how
these concepts could be represented in the interaction and in
the internal software architecture [3].

However, we now look at our three disciplines from a
unifying pattern perspective. We cannot explain all our
patterns in detail here, but will go through the disciplines,
each in a top-down fashion, following the hierarchy of a
pattern language. What most patterns aim at will become
clear from their name. Where applicable, the major
components of a pattern will be mentioned: The Context in
which the pattern can be applied, the Forces or conflicting
goals that are to be met, the Solution to this problem, its
Consequences, positive and negative, Related patterns that
either use this pattern, that are used by it, or that can be
used before or after it, and Examples of where this pattern
has been observed or applied successfully.

Musical Design Patterns
In music, our application domain, the Jazz Style is an
example of a high-level, abstract pattern. Its context is that
a musical piece is to be created, with conflicting forces like
ease-of-listening and musical complexity. The solution
incorporates many lower-level patterns of jazz music for
chord progressions (like the II-V-I Progression),
instrumentation, rhythm, etc. These patterns reach down to
low-level building blocks: individual notes (Blue Note
pattern), rhythmic timings (Triolic Groove pattern), etc.

Interaction Design Patterns
An abstract pattern for interaction design is
InteractiveExhibit. It captures the competing forces in the
context of designing a public, computer-based exhibit:
Visitor ÒthroughputÓ, interaction duration, information
goals, and exterior constraints of the exhibition
environment.

Its solution will involve the medium-level patterns
AttractUser, EngageUser, and DeliverMessage, who in

turn lead to patterns like ExplorableInterface: It balances
the forces of a simple initial system impression (to
implement AttractUser) and a system that remains
interesting over longer periods of interaction time
(EngageUser), by letting the user discover the system by
himself. No sequential paths through the system are
mandatory, initially only few options are there to choose
from, and only in reaction to the userÕs actions further
depth of the system is being revealed.

This gradual revealing finally can be implemented using
the DynamicDescriptor pattern (examples are BallonHelp
under MacOS, or ToolTips under MS Windows).

Software Design Patterns
This domain does not require much explanation as the idea
of design patterns in software engineering is fairly
established. In our case, these patterns would again create a
hierarchical language, from high-level architectural patterns,
to patterns about object interaction at a medium level of
abstraction [4], down to coding patterns that deal with
implementation aspects.

Linking the Pattern Languages
To create an interdisciplinary language from these three
pattern languages, they need to be cross-linked. For
example, the high-level concept of a certain musical form
(e.g., arrangement in heads and choruses) will influence the
overall design of the userÕs interaction with the system, and
also its overall system architecture that will need to
represent, store and process these concepts effectively. On
the other hand, low-level concepts like a certain rhyhmic
ÒgrooveÓ can be represented by a single user interface object
(e.g., a slider), and handled by a set of basic time-
processing modules within the software architecture.

CONCLUSIONS AND FURTHER RESEARCH
A pattern language spanning several disciplines promises to
be a very useful method for capturing design experience in
interdisciplinary teams. We have applied the idea to the
design of interactive music exhibits with some first success.

To complete and verify our patterns, we are currently
developing a new music exhibit with an entirely different
theme (composing classical music) to see how well our
patterns adapt to varying design situations.

We are also formalizing the interconnection between the
different pattern languages, as a basis for computer-based
development tools, but with human readability in mind.

REFERENCES
1. Alexander, C. A Pattern Language: Towns, Buildings,

Construction. Oxford University Press, UK, 1977.

2. Borchers, J. WorldBeat: Designing a Baton-Based
Interface for an Interactive Music Exhibit. Proc. CHIÕ97
(Atlanta GA, March 1997), ACM Press, 131Ð138.

3. Borchers, J., and Muehlhaeuser, M.: Design Patterns for
Interactive Music Systems. IEEE Multimedia 5(3), IEEE
Computer Society, 1998, 36Ð46.

4. Gamma, E., Helm, R., Johnson, R., and Vlissides, J.
Design Patterns: Elements of Reusable Object-Oriented
Software, Addison-Wesley, Reading MA, 1995.

