Teaching Usability Design Through Pattern Language

Richard N. Griffiths
University of Brighton
Brighton BN2 4GJ UK

+44 1273 642477
r.n.griffiths@brighton.ac.uk

ABSTRACT

For interface designers to produce really usable software
they require both knowledge of tools and methodologies
and attitudinal, aesthetic and creative characteristics.
Usability design patterns, based on the ideas of Christopher
Alexander, offer an approach to this educational need. We
discuss three approaches to incorporating design Patterns
into teaching: teaching about Pattern language, discovering
patterns and teaching through Pattern language. We
conclude that developing an ability to see the world of
usability design as patterns is more important than
knowing a canonical set of particular patterns, but that this
is an extremely difficult skill to acquire.

Keywords
Usability, patterns, pattern language, design, teaching.

INTRODUCTION

Challenges in teaching usability design

Designing usable software is difficult, and teaching others
how to do it is worse! Although useful methodologies
exist, it is not possible to teach someone simply “how to
do it”. To be capable of doing more than producing
Microsoft clones, student designers need a broader approach
to the task, one that has important attitudinal, aesthetic and
creative components.

Humility towards the end user is a particularly important
attitude to cultivate, as slogans such as “The designer is
not the user” and “Know your users’ recognise.
However, the interface designer may also need to challenge
the user’s ideas with a broader view of good practice culled
from the growing body of expertise. Being able to
communicate with the user about software presents a
challenge and requires careful thought about the choice of
representation for the evolving design [4].

A sense of the whole quality of an interface design must be
developed requiring the awareness of qualities such as,
affordance, conviviality, fitness to task and appropriate
stance. This sense is nascent in most experienced users of
computer systems, but typically expressed negatively:
“This interface is about as friendly as a cornered rat!” Like
the palate of a wine connoisseur, it needs to be “educated”.

Lyn Pemberton
University of Brighton
Brighton BN2 4GJ UK

+44 1273 642476

Ip22@brighton.ac.uk

Creativity is also required of the interface designer, or else
where are truly elegant solutions to come from? However,
we must distinguish between a genuinely creative design,
which elegantly solves a problem, and a solution which
simply uses a novel technique or component. An ability to
recognize the appropriate place for a previously identified
solution, perhaps involving a refinement of a crucial detail
to make it solve the new problem, is also a creative act. It
exemplifies the routine creativity required of an expert
designer and stems from a creative structuring of their deep
knowledge of the domain. Assistance in developing this
richly interconnected fund of knowledge is required. While
guidelines are a gesture towards this craft knowledge, their
explicit structuring is gross and often opaque.

Pattern Language

Pattern Language [1] is a way of representing and
accumulating knowledge of good design. It was originally
applied in town planning and architecture, but has recently
been taken up by object-oriented software designers [5]. A
key aspect of its original impulse is that it enabled
designers of buildings to capture that “quality without a
name” which could be felt in buildings which worked for
their inhabitants, but which was hard or even impossible to
formalise. Common features of buildings which have this
quality are identified as resolving a particular problem, and
this is presented as a pattern — a guide to implementation
that must be interpreted by individual designers, but which
will have certain invariant features. Patterns occur at
different levels within an artefact, and a pattern at one level
will imply a number of patterns at a lower level to
complete it. Thus a pattern for a room will imply patterns
for entrances, walls, windows, ceiling height and so on.
These linked patterns provide an informal grammar for
good design in the domain — a Pattern Language.

The design of usable software is a particularly appropriate
domain to apply patterns as the subjective feelings of users
about well designed software appear similar to the “quality
without a name” that is sought in architecture [7]. In
interfaces we call it “usability”, “conviviality”,
“engagement” and so on. Several usability design patterns
have recently been proposed [3, 6] and at least one
extensive pattern language has been written [8].

The development of the knowledge and skills required to
write usability pattern languages holds much promise for
meeting the educational needs of interface designers. We

have begun to apply these ideas in our undergraduate and
postgraduate teaching at the University of Brighton.

PATTERNS IN USABILITY DESIGN TEACHING
We are using three different but complementary approaches
to incorporate pattern language. The first, teaching about
Pattern Language is really teaching about design and
involves making connections between software design and
the debates on design theory that have gone on since the
60’s in the fields of architecture and industrial design [2].
This is unfamiliar territory in software engineering
syllabuses but is an area which deserves to be presented
more centrally. The recent advent of Tidwell’s substantial
HCI pattern language [8], has made it possible to take the
second approach, teaching through Pattern Language, by
setting students practical exercises in using a pattern
language in the process of design. We have begun small-
scale exercises using Tidwell’s patterns and informal
findings are that both the quality of discussion within
design teams and the product were considerably improved.
We intend to do more work in this area and attempt to
verify this impression more formally.

We explore here a third approach, taken with a small group
of Third Year students of User Centred Interaction Design,
to encourage students to discover and define interface
patterns for themselves. The rationale for the approach was
that discovery of Patterns by students would avoid
misconceptions about the status of any published patterns
which they were subsequently asked to apply: it would be a
process of demystification. The Pattern approach was
explained in a lecture and the students were directed to a
range of relevant Web sites and readings. They were then
asked to identify and catalogue four patterns. Although they
claimed to have understood the Patterns approach, when
they came to attempt the task themselves they found it
extremely difficult and asked for guidance on the process of
pattern discovery. We suggested two strategies: modifying
existing guidelines and drawing on personal experience.
Patterns can be thought of as richer versions of the
guidelines listed in every HCI text book, e.g. be
consistent, provide feedback and so on. Any student
choosing this approach simply had to find such a list and
add some “meat” to it. None of the students chose to do
this: they explained that starting with guidelines didn’t
make the task of linking the specific and the general any
easier for them.

Instead, they used the second approach, examining their
own experience of computing and building a pattern from
some feature which seemed an example of either good or
bad design. Good design is notoriously difficult to spot
since by definition it does not call attention to itself. Bad
design, on the other hand, makes its presence felt. All the
students’ examples were derived from bad rather than good
design. They drew on their experience of breakdowns
caused by inappropriate design decisions: aspects of their
software which frustrated them in their own work. The
eleven students presented 37 different suggestions for

patterns. Surprisingly, despite our extended preliminary
discussions, only a few of the suggestions approached the
status of true patterns. The majority of suggestions stayed
at the level of ungeneralised examples. For instance, one
student described his frustration at his system halting a
reboot to tell him it has found a non-system floppy disk in
its drive. Another described the sequence of operations he
had to perform during start-up to rid the screen of a series of
dialogue boxes informing him that his printer was
unconnected. Another mentioned the need on his system to
confirm a print command, which typically appeared on the
screen as he was already on his way to the remote printer. It
was only when we discussed the examples in class that it
became clear that each of these problems would be solved if
designers had used a pattern such as “Don’t interrupt
operations with trivial problems”.

CONCLUSION

Although they understood an exposition of the Pattern
Language approach, even Final year students found it
difficult to generalise from examples, a high level cognitive
skill. A two-stage process is needed if generalisations are to
be made, with individuals presenting examples from their
own experience from which can be identified. This confirms
Alexander’s own feeling that identifying good patterns is as
hard as doing nuclear physics, but doesn’t discourage us
from planning further experimentation with Pattern
Languages for teaching interaction design.

REFERENCES

1. Alexander, C., Ishikawa, S. & Silverstein, M. A
Pattern Language: Towns, Buildings, Construction.
Oxford University Press, 1977.

2. Cross, N. Developments in Design Methodology.
John Wiley, Chichester, 1984.

3. Erikson, T., The Interaction Design Patterns Page.
Available at http://www.pliant.org/personal/ Tom
Erickson/InteractionPatterns.html.

4. Erickson, T. Interaction pattern languages: A /lingua
franca for interaction design? Invited talk presented at
the UPA Conference 1998 (Washington, D.C., June
1998) available at http://www.pliant.org/personal/
Tom_Erickson.

5. Gamma, E., Helm, R., Johnson, R. & Vlissides, J.
Design patterns : elements of reusable object-oriented
software. Addison-Wesley, 1995.

6. Griffiths, R. Brighton Usability Pattern Collection
available at. http://www.it.bton.ac.uk/cil/usability
/patterns/.

7. Pemberton, L. and R. Griffiths. The Timeless Way:
Making Cooperative Buildings with Design Patterns. In
Proceedings of CoBuil98, Speinger Verlag, 1998.

8. Tidwell, J., Common Ground. available at
http://www.mit.edu/~jtidwell/common_ground.html.

