
Pattern Languages in Human-Computer Interaction
(Suite Overview)

Jan O. Borchers
Telecooperation Research Group

Linz University
4040 Linz, Austria
+43 732 2468 9888
jan@tk.uni-linz.ac.at

ABSTRACT
The concept of pattern languages has found its way from
urban architecture into software engineering quite
successfully. HCI, however, has only started to explore the
possibilities of this approach in recent years.

This paper briefly introduces pattern languages in general,
and gives an overview of the state of the art of pattern
languages in HCI. Due to its well-balanced mixture of
formality and human-centered clarity, the pattern language
approach promises a very suitable tool for communication
within HCI, and between HCI and other disciplines.

Keywords
Design patterns, pattern languages, interaction design, HCI
education

INTRODUCTION
CHI as a research discipline has come a long way. Other
disciplines have begun to take its increasingly coherent
body of rigorously formulated methodologies, amended by
empirically proven design guidelines, very seriously.
Methodologies like User-Centered Design begin to find
their way into commercial software development, and
standardization activities have begun, like the ISO standard
14915 on multimedia user interfaces.

The problem: Communication
This rich body of knowledge, however, often proves
worthless when practitioners try to apply it to real-world
projects, because it is not formulated in a way that helps
the designer, or users involved in the design, to learn about
the ideas behind the guidelines and checklists.

On the other hand, every user interface designer has
experienced the problem of relating design guidelines and
similar knowledge to developers: Most guidelines appear to
them to be either self-evident, or too unspecific to follow,
or of too limited applicability. Computer scientists are used
to a formal, algorithmic approach with exact rules that
design often simply cannot offer due to the imprecise nature
and complexity of the factors involved. Both problems are
essentially problems of language.

The solution: Pattern Languages
Using the idea of pattern languages can help to form a
framework in which HCI knowledge can be expressed in a
form that helps to communicate it to others in the HCI
community, and even to relate it more easily to other

members of an interdisciplinary team. Let us therefore take
a brief look at the history of pattern languages.

PATTERN LANGUAGES IN ARCHITECTURE
The idea of pattern languages was originally described by
architect Christopher Alexander in his books about urban
architecture, mainly [1] and [2]. To create architectures that
better fit and adapt to the needs of their users, Alexander
suggests creating a language of patterns that capture the
essence of successful architectural solutions to recurring
problems which are described as systems of competing
forces: ÒAs an element in the world, each pattern is a
relationship between a certain context, a certain system of
forces which occurs repeatedly in that context, and a certain
spatial configuration which allows these forces to resolve
themselves. As an element of language, a pattern is an
instruction, which shows how this spatial configuration can
be used, over and over again, to resolve the given system of
forces, wherever the context makes it relevant.Ó [2, p. 247].

A tpyical example of the more than 250 patterns Alexander
describes in [1] is the Street Cafe: To solve the problem of
creating an Identifiable Neighborhood with Activity Nodes
and Public Squares (all these are names of other patterns
defined in his text), the Street Cafe pattern can be applied:
Several rooms of a cafe create a Gradient of Privacy, from a
terrace with tables near the busy path, to more quiet rooms
in the back. Newspapers in one corner make it an inviting
place to pass some time, etc. The pattern solves a number
of competing forces, e.g., of privacy and the desire to
observe passers-by. It can be implemented using a number
of smaller patterns, like A Place to Wait, Sitting Wall, and
Opening to the Street.

Pattern languages in software design
The software engineering community was introduced to the
Pattern concept in 1987, and it was in fact an HCI design
case. Beck and Cunningham [6] built on AlexanderÕs ideas
to create a small pattern language capturing user interface
design rules for Smalltalk applications, and presented their
findings at an OOPSLAÕ87 conference workshop. Using
their language of just five patterns, several application
domain experts were able to design their own user interfaces
based on Smalltalk mechanisms without any prior
knowledge of the language.

These essentially didactic possibilities may have been one
of the major reasons why the software engineering

community took up the idea of design patterns so eagerly,
especially after Gamma, Helm, Johnson and Vlissides
(frequently referred to as the Gang of Four) published their
seminal book describing a comprehensive pattern language
for object-oriented software design [9]: It offered software
engineering a new and practical way to communicate
software design experience.

Since then, a software design pattern is generally considered
to be a proven solution of a recurring software engineering
problem that balances the competing design constraints
optimally for a certain type of situation.

In software design, as in architecture, patterns need to have
certain qualities to distuingish them from other, simpler
ways of describing problem solutions: They must

- Carry a name that is as self-explanatory as possible,

- clearly define the context in which they can be applied,

- describe a proven solution to a recurring problem,

- give examples where they have been applied,

- be flexible and adaptive enough to generate solutions
in varying contexts,

- and reference other patterns to use synergistically, in
order to create a solution as a whole of high quality.

That last item is especially important: Only when a
comprehensive collection of patterns has been structured
and interlinked in this way, it can become a pattern
language.

PATTERNS IN HCI
At first sight, it seems that the pattern idea has been picked
up by the HCI community only recently, especially since
the CHIÕ97 workshop [5]. Surprisingly, however,
AlexanderÕs ideas have been referenced by major HCI works
much earlier. In 1988, Donald Norman, in his ÔPOETÕ
book which is a standard text in many HCI courses [10],
cited Alexander as a designer whose work had particularly
influenced him. Another HCI ÔclassicÕ, AppleÕs Human
Interface Guidelines [3], quotes AlexanderÕs A Pattern
Language as a seminal book about environmental design.

A more detailed adaption of AlexanderÕs ideas was done by
by the Utrecht School of Arts. In an overview of their
interaction design curriculum, they outlined how they had
adapted AlexanderÕs approach to interaction design,
ÒÉusing patterns to phrase guidelines in a consistent
format that leaves room for subtleties.Ó [4].

The CHIÕ97 workshop on Pattern Languages for Interaction
Design [5] was an important event for the issue of pattern
languages in HCI. It collected quite different opinions on
how to carry the patterns idea over to HCI, for example
from using patterns to describe observed user activities
without judgment, to using them to capture HCI design
practice. But in particular, the participants agreed that they
ÒÉ felt we were at the very beginning of the enterprise of
understanding the role and utility of pattern languages for
interaction design.Ó [5].

Within the last two years, the field has gained in
momentum, and a number of proposals for pattern

languages of HCI design issues have been published. A
prominent example is J. TidwellÕs pattern language for
interaction design [11] that, in its present form, covers a
substantial area of user interface design, but others have
been presented, especially at the various PloP Conferences
on Pattern Languages of Programming. A useful set of
resources about interaction design patterns can be found at
the Interaction Design Patterns Home Page, maintained by
T. Erickson [7], who recently presented his ideas of pattern
languages as a lingua franca for interaction design [8].

ABOUT THE PAPER SUITE
We have tried in this collection to capture the diversity of
applications that the idea of pattern languages has produced
in the HCI domain since then. Since patterns themselves
by definition are nothing ÒoriginalÓ, but rather capture
solutions that have proven themselves useful, and are
therefore not strictly new findings, our focus is more on the
question how the pattern approach can be applied to HCI
research, practice, and teaching. The themes reach from
fundamental questions about the genre of patterns, to their
use in teaching, workplace environment design, and
communication in interdisciplinary design teams.

Our common opinion is that pattern languages can give
HCI a tool with the right degree of formality to capture
experience, guidelines, methods, and values in human-
computer interaction design. This collaboration has already
established a fruitful exchange on this subject, and we hope
to continue and expand it to a broader circle.

REFERENCES
1. Alexander, C. A Pattern Language: Towns, Buildings,

Construction. Oxford Univ. Press, Oxford, UK, 1977.

2. Alexander, C. The Timeless Way of Building. Oxford
University Press, Oxford, UK, 1979.

3. Apple Computer. Macintosh Human Interface
Guidelines. Apple Computer, Inc., 1992.

4. Barfield, L. et al: Interaction Design at the Utrecht
School of the Arts. SIGCHI Bull. 26(3), 1994, 49-79.

5. Bayle, E. et al. Toward a Pattern Language for
Interaction Design. SIGCHI Bull.30(1), 1998, 17-23.

6. Beck, K., and Cunningham, W. Using pattern
languages for object-oriented programs. Technical
Report CR-87-43, Tektronix, Inc., September 17, 1987.

7. Erickson, T. Interaction Design Patterns Home Page.
Established February 1998. http://www.pliant.org/
personal/Tom_Erickson/InteractionPatterns.html

8. Erickson, T. Interaction Pattern Languages: A Lingua
Franca for Interaction Design? Usability ProfessionalsÕ
Assoc. Conf., Washington DC, June 1998. See [7].

9. Gamma, E. et al. Design Patterns: Elements of
Reusable Object-Oriented Software. Add.-Wesley 1995

10. Norman, D. The Psychology of Everyday Things. Basic
Books, New York, 1988, 229;238.

11. Tidwell, J. Interaction Design Patterns. PloPÕ98,
Illinois, Aug.Õ98. http://jerry.cs.uiuc.edu/~plop/plop98

